Chinese discovery challenges classical theory of astrophysics

Thu, Jan 19, 2023
By editor
3 MIN READ

Foreign

CHINESE astronomers recently discovered a distribution law of stellar mass that applied when stars were born.

The new finding challenged a classical theory of astrophysics, and would have a profound impact on frontier research in fields such as the evolution of stars, galaxies and the universe.

The research team was led by Liu Chao, a researcher at the National Astronomical Observatories of China (NAOC) under the Chinese Academy of Sciences.

They found that stellar initial mass function (IMF) varied with metallicity and time, and the discovery was published in the latest issue of the Academic Journal Nature.

In the vast universe, many new stars of different masses were born in batches in the same star formation region.

Most structural and evolutionary property of galaxies strongly relied  on the IMF, namely the distribution of the stellar mass formed in each episode of star formation.

Li Jiadong said that the first author of the paper was from NAOC.

For over half a century, most astronomers believed that the stellar IMF is universal and constant at all stages of the universal evolution, which had become a classical hypothesis in astrophysical textbooks.

However, observations in recent years suggested that the stellar IMF might be variable.

More direct and powerful observational evidence in the Milky Way was needed, said Zhang Zhiyu, a member of the research team from Nanjing University.

Based on the massive observational data of China’s Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and the European Space Agency’s Gaia satellite.

The Chinese astronomers selected over 90,000 stellar samples in the neighbourhood of the Sun.

“We find unambiguous evidence of a variable IMF that depends on both metallicity and stellar age,’’ said Liu.

Specifically, the stellar population formed at early times contained fewer low-mass stars compared with the canonical IMF, independent of stellar metallicities. In more recent times, however, the proportion of low-mass stars increased with stellar metallicity.

“The variable abundance of low-mass stars in our Milky Way establishes a powerful benchmark for models of star formation and can heavily affect results in Galactic chemical-enrichment modelling, mass estimation of galaxies and planet-formation efficiency.

“It’s like the ‘ruler’ of the universe changes with the environment.

“We cannot measure the early universe with the current ‘ruler’ of the Milky Way.

“We need to use different ‘rulers’ to measure the different parts of the universe appropriately,’’ Liu said.

This breakthrough discovery would influence many fields of astrophysical studies, such as measuring the mass of dark matter and baryonic matter in galaxies at different stages of the universe.

Understanding the process of star formation, detecting extrasolar planets, and even studying gravitational wave events, said scientists.

China is expected to launch the Chinese Space Station Telescope (CSST), which would help astronomers further verify this important discovery in the Milky Way and the neighbouring galaxies.

And provide richer observational data for a deeper understanding of the IMF and the physical process of star formation, said scientists. (Xinhua/NAN)

A.I

Tags:


Obamas endorse Kamala Harris for president

BARACK Obama has endorsed Vice-President Kamala Harris to be the Democratic presidential nominee, ending days of speculation over whether...

Read More
Biden addresses US, as Trump, Harris trade barbs in reset presidential race

U.S. President Joe Biden addressed the nation on Wednesday for the first time since dropping his reelection bid, saying he...

Read More
FG repatriates 158 irregular Nigerian migrants from Libya

THE Federal Government has repatriated 158 irregular Nigerian migrants from Libya. Nigeria’s Charge’ d’ Affaires...

Read More